


4.1

4.2

4

5.1

5.2

5.3

5.4

5

6.1

6.2

6.3

6.4

6.5

6.6

6

7.1

7

1

2

3

4.3

5.5

6.7

Summary

Introduction

What	is	Sage?

Why	Sage?

Starting	a	project

Installing	the	Sage	starter	theme

Theme	setup

Planning	out	the	theme

Customizing	templates

Blade	templates

Template	files

Building	template	partials

Responsive	images	&	post	thumbnails

Displaying	the	sidebar

Customizing	the	front-end

CSS	setup	and	organization

Default	CSS	and	JS

Bootstrap

Browsersync

JavaScript	and	DOM-based	routing

3rd	party	packages

Asset	paths	in	CSS	and	templates

Theme	functionality

Adding	additional	files



7.2

8.1

8

7.3

8.2

9

10

11

12

13

14

Namespaces

Take	advantage	of	newer	PHP	features

Theme	customizations

WordPress	Customizer

Advanced	Custom	Fields

Theme	deployment

Theme	troubleshooting

Theme	updates	and	maintenance

Resources

Wrapping	up

CHANGELOG



In	your	typical	WordPress	theme,	every	page	template	will	look	something	like	the	following:

get_header();	?>

		<div	id="primary"	class="content-area">
				<main	id="main"	class="site-main"	role="main">

						<?php
						while	(	have_posts()	)	:	the_post();
								get_template_part(	'template-parts/content',	'page'	);
								//	If	comments	are	open	or	we	have	at	least	one	comment,	load	up	the	comment	template.
								if	(	comments_open()	||	get_comments_number()	)	:
										comments_template();
								endif;
						endwhile;	//	End	of	the	loop.
						?>

				</main><!--	#main	-->
		</div><!--	#primary	-->

<?php
get_sidebar();
get_footer();

Even	though	we	know	that	every	template	will	take	this	base	format	and	render	the	header,	footer,	sidebar	calls	each	time,
we	still	need	to	continuously	repeat	the	code.

One	of	the	biggest	benefits	of	using	Blade	templates	is	the	ability	to	remove	any	repeated	markup	from	individual
templates	and	put	it	into	a	single	file.	This	file,	resources/views/layouts/app.blade.php,	becomes	the	base	layout	file.	By

doing	this	we	can	put	the	focus	entirely	on	the	page	specific	markup	and	loop,	simplifying	our	templates	to	look	like	this:

@extends('layouts.app')

@section('content')
		@while(have_posts())	@php(the_post())
				@include('partials.page-header')
				@include('partials.content-page')
		@endwhile
@endsection

It’s	neat.	It’s	tidy.	You	never	need	to	make	calls	to	get_header(),	get_footer(),	or	get_sidebar()	again.	You	can	also	refactor

the	base	layout	of	your	site	by	editing	app.blade.php.

Passing	data	to	templates

Sage	includes	a	sage/template/{$class}/data	filter	that	can	be	used	to	pass	data	to	templates.	This	is	the	most	simple	way

to	pass	data.	The	filter	is	based	of	body	classes	and	can	be	used	to	target	specific	templates,	for	example:

sage/template/home/data	—	Home	page

sage/template/about/data	—	About	page

sage/template/page/data	—	All	pages

sage/template/post-type-archive-event/data	—	event	post	type	archive

sage/template/single-event/data	—	event	single	post	template

Note:	Sage	comes	ready	for	you	to	modify	the	body_class	by	editing	the	filter	at	the	top	of	app/filters.php.

In	the	example	below	we're	passing	the	the	values	of	two	ACF	fields,	header_image	and	header_content,	to	all	pages:

Blade	templates

37



JavaScript	and	DOM-based	routing

Sage	uses	ES6	for	the	JavaScript	that's	included	in	the	theme.	Since	Sage	strives	to	use	the	current	best	practices	for
modern	front-end	development,	the	theme	allows	the	usage	of	ES6	and	also	enforces	coding	standards	with	ESLint.

	See	the	resources	chapter	for	lots	of	recommended	content	on	learning	more	about	ES6!

Since	Sage	doesn't	ship	with	any	JavaScript	out	of	the	box,	except	for	the	DOM-based	router,	you	might	not	notice	this
until	you	modify	the	JS	and	attempt	to	build.

The	ESLint	configuration	is	located	at	assets/build/.eslintrc,	where	you	might	want	to	make	changes	that	fit	your	own

coding	styles.	We've	picked	Airbnb's	JavaScript	standard	as	the	basis	for	ours.

To	disable	the	linting	in	a	specific	file	or	within	a	file,	use	inline	comments:

/*	eslint-disable	*/
alert('foo');
/*	eslint-enable	*/

The	primary	theme	JavaScript	file	located	at	resources/assets/scripts/main.js	is	used	to	import	dependencies	from

vendored	packages	(Bootstrap)	as	well	as	local	dependencies.	Out	of	the	box,	Sage	comes	with	the	following
local	dependencies:

common	(resources/assets/scripts/routes/common.js)	—	JavaScript	fired	on	all	pages

home	(resources/assets/scripts/routes/home.js)	—	JavaScript	fired	on	a	page	with	a	body	class	that	contains	home

aboutUs	(resources/assets/scripts/routes/about.js)	—	JavaScript	fired	on	a	page	with	a	body	class	that	contains

about-us

The	local	dependencies	are	based	on	DOM-based	routing,	which	lets	you	conditionally	execute	JS	on	certain	pages
based	on	the	page’s	body	classes.	To	add	a	new	route,	you'll	need	to	create	the	file,	import	it,	and	add	it	to	the	routes

variable	in	main.js.

When	you’re	working	with	a	body	class	that	contains	a	dash,	such	as	contact-us,	you’ll	need	to	replace	the	dash	with	a

JavaScript	and	DOM-based	routing

65

http://eslint.org/docs/user-guide/configuring
https://github.com/airbnb/javascript
http://eslint.org/docs/user-guide/configuring#disabling-rules-with-inline-comments


Asset	paths	in	CSS	and	templates

The	folder	structure	of	resources/assets/	and	dist/	are	the	same.	When	you	run	the	build	script,	the	assets	from	the

resources/assets/	directory	get	compiled	into	the	same	location	within	the	dist/directory/.

Images	that	are	in	assets/images/	get	optimized	and	copied	over	to	the	dist/images/	folder.	Subdirectories	are	kept	intact,

too.	For	instance:

resources/assets/images/logo.svg												->	dist/images/logo.svg
resources/assets/fonts/opensans.woff2							->	dist/fonts/opensans.woff2
resources/assets/images/home/product-01.jpg	->	dist/images/home/product-01.jpg

If	you’re	in	a	stylesheet	and	you’d	like	to	reference	an	image,	resources/assets/images/logo.svg,	you	would	write:

.brand	{
		background:	url(../images/logo.svg);
}

If	you’re	in	a	template	and	you’d	like	to	reference	the	same	image,	you	would	use	the	@asset	directive:

<img	src="@asset('images/logo.svg')">

If	you're	in	a	stylesheet	and	you'd	like	to	reference	a	font,	you	would	write:

@font-face	{
		font-family:	'opensans';
		src:	url('../fonts/opensans.woff2')	format('woff2');
		font-weight:	normal;
		font-style:	normal;
}

Asset	paths	in	CSS	and	templates

70



Vue.js	and	Sage	9	example
Move	required	theme	files	to	theme	root	folder
WooCommerce	and	Sage	9
Sage	9	child	theme
Router	custom	functions	in	Sage	9

People	to	follow

WordPress
Alain	Schlesser
Danny	van	Kooten
Giuseppe	Mazzapica
Iain	Poulson
K.	Adam	White
Tom	J	Nowell

Trac	tickets	worth	following

If	you	login	to	your	WordPress.org	account	on	Trac	you	can	star	tickets	to	get	notifications	of	any	new	activity.	These
tickets	are	some	of	the	ones	that	I'm	following:

#3833	—	Extra	</p>	inside	blockquote
#4298	—	wpautop	bugs
#5250	—	wpautop()	issue	with	lists
#7795	—	Activate	and	Deactivate	Theme	hooks
#12877	—	Modular	themes:	Apply	template	hierarchy	to	folders	within	a	theme
#13239	—	Filter	locate_template	template_names	variable
#14502	—	Enable	/post-type/taxonomy/term/	permalinks
#15086	—	get_template_part()	should	let	you	specify	a	directory
#21022	—	Allow	bcrypt	to	be	enabled	via	filter	for	pass	hashing

Use	wp-password-bcrypt	in	the	meantime	(included	with	Bedrock)
#21790	—	WP	main	query	isn't	set	correctly	for	static	front	page
#22316	—	Plugin	Dependencies
#23221	—	Multisite	in	subdirectory	with	root	site	address

Use	multisite-url-fixer	in	the	meantime
#23912	—	Add	Composer	package	description
#24044	—	Add	index	to	wp_options	to	aid/improve	performance
#24152	—	Use	JSON	as	alternative	to	headers	
#31475	—	Add	ability	to	change	the	folder	location	for	templates
#31258	—	SVG	replaced	by	default	image	in	media	library
#33381	—	Strategize	the	updating	of	minimum	PHP	version
#33472	—	Templating	Engine
#33473	—	Shortcodes	+	Widgets	+	Nav	Menus.	Unified	“component”	API	(aka	Content	Blocks)
#34136	—	Allow	register_post_type's	rewrite	to	remove	CPT	slug

#35669	—	Store	widgets	in	a	custom	post	type	instead	of	options
#36292	—	Rewrites:	Next	Generation
#36335	—	Core	autoloader	proposal
#39309	—	Secure	WordPress	Against	Infrastructure	Attacks

Resources

95

https://webgurl.ca/entry/modern-wordpress-theme-workflow
https://github.com/roots/sage-installer/issues/3#issuecomment-337852956
https://discourse.roots.io/t/any-working-example-of-sage-9-latest-sage-9-0-0-beta-4-with-woocommerce-3-1-1/10099/2
https://discourse.roots.io/t/sage-9-child-theme/7385/22
https://discourse.roots.io/t/router-custom-functions-in-sage-9-w-yarn-etc/9717
https://twitter.com/schlessera
https://twitter.com/dvkoot
https://twitter.com/gmazzap
https://twitter.com/polevaultweb
https://twitter.com/kadamwhite
https://twitter.com/Tarendai
https://core.trac.wordpress.org/ticket/3833
https://core.trac.wordpress.org/ticket/4298
https://core.trac.wordpress.org/ticket/5250
https://core.trac.wordpress.org/ticket/7795
https://core.trac.wordpress.org/ticket/12877
https://core.trac.wordpress.org/ticket/13239
https://core.trac.wordpress.org/ticket/14502
https://core.trac.wordpress.org/ticket/15086
https://core.trac.wordpress.org/ticket/21022
https://github.com/roots/wp-password-bcrypt
https://core.trac.wordpress.org/ticket/21790
https://core.trac.wordpress.org/ticket/22316
https://core.trac.wordpress.org/ticket/23221
https://github.com/roots/multisite-url-fixer
https://core.trac.wordpress.org/ticket/23912
https://core.trac.wordpress.org/ticket/24044
https://core.trac.wordpress.org/ticket/24152
https://core.trac.wordpress.org/ticket/31475
https://core.trac.wordpress.org/ticket/31258
https://core.trac.wordpress.org/ticket/33381
https://core.trac.wordpress.org/ticket/33472
https://core.trac.wordpress.org/ticket/33473
https://core.trac.wordpress.org/ticket/34136
https://core.trac.wordpress.org/ticket/35669
https://core.trac.wordpress.org/ticket/36292
https://core.trac.wordpress.org/ticket/36335
https://core.trac.wordpress.org/ticket/39309

